Geosci. Model Dev. Discuss., 5, 347-382, 2012 - —*
www.geosci-model-dev-discuss.net/5/347/2012/

doi:10.5194/gmdd-5-347-2012

© Author(s) 2012. CC Attribution 3.0 License.

Geoscientific
Model Development
Discussions

Assessing climate model software
quality: a defect density analysis of
three models

J. Pipitone and S. Easterbrook
Department of Computer Science, University of Toronto, Canada

Received: 1 January 2012 — Accepted: 12 January 2012 — Published: 15 February 2012
Correspondence to: J. Pipitone (jon.pipitone @ utoronto.ca)

Published by Copernicus Publications on behalf of the European Geosciences Union.

347

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

A climate model is an executable theory of the climate; the model encapsulates cli-
matological theories in software so that they can be simulated and their implications
investigated. Thus, in order to trust a climate model one must trust that the software it
is built from is built correctly. Our study explores the nature of software quality in the
context of climate modelling. We performed an analysis of defect reports and defect
fixes in several versions of leading global climate models by collecting defect data from
bug tracking systems and version control repository comments. We found that the cli-
mate models all have very low defect densities compared to well-known, similarly sized
open-source projects. We discuss the implications of our findings for the assessment
of climate model software trustworthiness.

1 Introduction

In this paper we report on our investigation into the software quality of climate models.
A study by Easterbrook and Johns (2009) of the software development practices at
the UK Met Office Hadley Centre cites an extremely low defect density for the climate
model produced there, which suggests an extraordinary level of software quality. Our
purpose in this study is to rigorously conduct a defect density analysis across several
climate models to confirm whether this high level of quality holds and whether it is true
of other models.

Defect density measures the number of problems fixed by the developers of the
software, normalised by the size of the body of code. We chose defect density as
our indicator of quality because it is well-known and widely used across the software
industry as a rough measure of quality, and because of its ease of comparison with
published statistics. Additionally, the measure is general and does not rely on many
assumptions about how software quality should be measured, other than the notion
that fewer defects indicate greater software quality.

348

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

2 Background
2.1 Measuring software quality

In software engineering research, software quality is not a simple, well-defined con-
cept. Kitchenham and Pfleeger (1996) suggest that software quality can be viewed
through five different lenses:

— The transcendental view sees software quality as something that can be recog-
nised and worked towards, but never precisely defined nor perfectly achieved.
This view holds that quality is inherently unmeasurable.

— The user view describes software quality by how well the software suits the needs
of its users. This view does not consider the construction of the software unless
it has a bearing on the user experience.

— The manufacturing view considers quality as conformance to specifications and
development processes. Measuring manufacturing quality is done through mea-
suring defect counts and rework costs.

— The product view sees quality as indicated by measurable internal characteris-
tics of the software itself without regard to its use or usability. Software metrics
like code coverage, cyclomatic complexity, and program size are some ways of
measuring software quality from the product view.

— The value-based view takes an economic perspective by equating software qual-
ity with what the customer is willing to pay for the software.

The product and manufacturing views are the dominant views adopted by software
researchers (van Vliet, 2000). Software is seen as a product produced by a manufac-
turing process, i.e. software development. This view enables the quality of a product
to be measured independently of the manufacturing process. Quality is then either

349

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the extent to which the product or process conforms to predetermined quality require-
ments, or the extent to which the product or process improves over time with respect to
those requirements. Quality requirements are then made measurable by decomposing
them into quality factors and subfactors. Each factor is then associated with specific
metrics taken as indicating the degree to which that factor is present, and so indicating
the degree of overall quality. Software quality is variously defined as “the degree to
which a system, component or process meets specified requirements,” (IEEE, 1990)
or more broadly as “the degree to which software possesses a desired combination of
attributes” (IEEE, 1998).

These two perspectives on software quality have been formalised in software en-
gineering standards. ISO Std 9126 (1SO, 2001) and IEEE Std 1061 (IEEE, 1998)
are both aimed at managing product conformance. The Capability Maturity Model
(CMM/CMMI)1 is a framework for measuring and carrying out software development
process improvement. ISO 9001 and related ISO 900x standards? define how to man-
age and measure (software development) process conformance. Whilst these stan-
dards reflect the product and manufacturing views in what aspects of software de-
velopment they consider relevant to software quality, the standards do not prescribe
specific quality measurements nor hold any specific measures as necessarily better
at indicating quality than others. Those choices and judgements are left as tasks for
individual projects.

2.2 Scientific software development

There is a long history of software research focused on industrial and commercial soft-
ware development but it is only recently that scientific software development has been
seen as an important area of research (Kelly, 2007). There is evidence to show that
scientific software development has significant differences from other types of software
development.

'See http://www.sei.cmu.edu/cmmi/
2See http://www.iso.org/iso/iso_catalogue/management_standards/quality_management.htm

350

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.sei.cmu.edu/cmmi/
http://www.iso.org/iso/iso_catalogue/management_standards/quality_management.htm

10

15

20

25

Segal and Morris (2008) and Segal (2008) point to two major differences. Exper-
imentation and trial-and-error work is an essential part of the development process
because the software is built to explore the unknown. It is often impossible to provide
complete requirements for the software upfront, and in fact, the requirements are ex-
pected to emerge and change over the lifetime of the project as the understanding of
the science evolves. Partly because of this, the scientists must develop the software
themselves, or be intimately involved, since it would be impossible to build the software
correctly without their guidance and knowledge.

In a study of high-performance computing (HPC) communities, Basili et al. (2008)
find that scientists value scientific output as the highest priority and make decisions on
program attributes accordingly. For instance, an increase in machine performance is
often seen as the opportunity to add scientific complexity to their programs, not as an
opportunity to save on execution time (since that may not serve as great a scientific
purpose). They report that scientists recognised software quality as both very impor-
tant and extremely challenging. They note that the techniques used are “qualitatively
different for HPC than for traditional software development”, and that many software en-
gineering techniques and tools, such as interactive debuggers, are simply not usable
in their environment.

In summary, scientific software development (under which climate modelling falls)
is markedly different from the traditional domains studied by software researchers. It
works with few upfront requirements and a design that never truly settles since it must
adapt to constant experimentation.

This raises the question: what does software quality mean in the climate modelling
context?

2.3 The problem of software quality in scientific software

Stevenson (1999) discusses a divide between the software research community and

the scientific community as it applies to scientists building large-scale computer simula-

tions as their primary research apparatus. Stevenson raises the concern that because
351

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the primary job of a scientist is to do science, software engineering notions of quality
do not apply to software constructed as part of a scientific effort. This is because of
fundamentally incompatible paradigms: scientists are concerned with the production
of scientific insight, while software engineers are concerned with the manufacturing
process that produces software. Stevenson argues that for the term software quality to
have meaning in the scientific domain, our notions of quality must be informed by our
understanding of the requirement for insight and all that it entails.

When considering the use of computational simulations for science, insights come by
way of gaining knowledge about the natural system that is being modeled. Stevenson
offers specific terminology to understand this point clearly. There are three kinds of
systems involved: the observational (i.e. the world itself; in our case, the climate),
the theoretical (i.e. our theory or model of the workings of the observational system;
in our case, the equations and concepts that describe climate processes), and the
calculational (i.e. the executable implementation of the theoretical model; in our case,
climate model code)3. Computational scientists study the behaviour of the calculational
system to gain insight into the workings of the theoretical system, and ultimately the
observational system.

Two basic kinds of activity ensure that the systems correspond to one another. Val-
idation is the process of checking that the theoretical system properly explains the
observational system, and verification is the process of checking that the calculational
system correctly implements the theoretical system. The distinction between validation
and verification is expressed in the questions, “Are we building the right thing?” (vali-
dation) and, “Are we building the thing right?” (verification). Stevenson also uses the
term complete validation to refer to checking all three systems — that is, to mean that
“we compute the right numbers for the right reasons.”

Stevenson describes two types of quality with respect to the above model of compu-

3There are alternatives to these terms which Stevenson does not mention. The term mode/
is used both to refer to the theoretical system at times, and at other times to refer to the calcu-
lational system. The term simulation is only used to refer to the calculational system.

352

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

tational science. Intrinsic quality is “the sum total of our faith in the system of models
and machines.” It is an epistemological notion of a good modelling endeavor; it is what
we are asking about when we ask what needs to be present in any theoretical system
and any implementation for us to gain insight and knowledge. Internal quality applies
to a particular theoretical and calculational system, and asks how good our model and
implementation is in its own right. For a mathematician, internal quality may relate to
the simplicity or elegance of the model. For a computer scientist or engineer, internal
quality may relate to the simplicity or extensibility of the code.

We have seen that, from one perspective, scientific insight is the ultimate measure
of the overall quality of a scientific modelling endeavour. Meaningful insight depends
upon theoretical and calculational systems corresponding in sensible ways to each
other, and ultimately to the observational system under study. So, the “correctness” of
our models is bound up with our notion of quality: what are the “right numbers”? How
do we know when we see them? The conceptual machinery for approaching these
questions is discussed succinctly by Hook (2009) and Hook and Kelly (2009).

Hook divides error, the “difference between measured or calculated value of a quan-
tity and actual value”, into acknowledged error and unacknowledged error. Acknowl-
edged errors “are unavoidable or intentionally introduced to make a problem tractable”
whereas unacknowledged errors “result from blunders or mistakes”. Defining a theo-
retical model and refining it into a calculational model necessarily introduces acknowl-
edged error. This error may come in the form of uncertainties in experimental obser-
vations, approximations and assumptions made to create a theory of the observational
system, truncation and round-off errors that come from algorithmic approximations and
discretizations of continuous expressions, the implementation — i.e. programming — of
those algorithms, or even from compiler optimizations made during translation to ma-
chine code. Unacknowledged errors may appear at any step along the way because of
mistakes in reasoning or misuse of equipment.

There are two fundamental problems that make impossible the traditional notion of
testing by way of directly comparing a program’s output to an expected value. The

353

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

first is what Hook terms the folerance problem: it is impossible, or very difficult, to
tell if errors in output are completely free of unacknowledged error since it may be
difficult to bound acknowledged error, and even with a bound on acknowledged error it
is impossible to detect unacknowledged errors that fall within those bounds. In short,
because there is a range of acknowledged error in the output, some unacknowledged
error cannot reliably be detected.

The second problem is the oracle problem: “available oracles are problematically
imprecise and limited”. That is, for certain inputs there may not exist a source of pre-
cise expected outputs with which to compare a program’s output. For a computational
scientist many of the important outputs of scientific software are the results of an ex-
periment. If the output was always known beforehand then the scientists would not
be engaging in science. As a result of the oracle problem, scientists may have to rely
on educated guesses, intuition, and comparison to available data in order to judge the
“correctness” of their software.

In summary, for any given input there may be no accurate expected output values
(the oracle problem) and because of inherent error in the output unacknowledged errors
may be undetectable (the tolerance problem). These problems do not suggest that
building correct models is impossible, but that in the scientific software domain we
must redefine correctness so as to take into account these problems. That is, we
cannot accept that an evaluation of a model’s correctness consists only of comparing
output to expected values.

How, then, should climate model quality be judged? This is the problem of quality
in scientific software which the present work explores, albeit only partially since we
concern ourselves with the question of software quality and not theoretical quality.

Kelly and Sanders (2008) discuss the core questions that ought to guide a research
program to understand and improve the quality of scientific software. They motivate
their discussion by noting that in all software domains, testing is the most widely used
quality assessment technique, yet scientists typically run tests only to assess their the-
ories and not their software. From a scientist’s perspective, Kelly and Sanders observe,

354

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

“the software is invisible” — that is, scientists conflate the theoretical and calculational
systems — unless the software is suspected of not working correctly (Segal, 2008).
Kelly and Sanders point to this conflation, as well as a variety of other factors (such
as the oracle problem), that prevent the study of scientific software quality from being
a straightforward matter of applying existing software engineering knowledge to a new
domain. Instead, they ask that software researchers work with scientists to learn more
about their development context, and establish which software development techniques
can be used directly and what has to be adapted or created. With respect to the subject
of this thesis, they ask: “At this point, we don’t have a full list of factors that contribute to
correctness of scientific software, particularly factors in areas that a software engineer
could address. What activities can contribute to factors of importance to correctness?
How effective are these activities?” We will revisit these questions in Sect. 5.2.
Assessing the quality of scientific software may be tricky, but is it needed? Hatton
(1997b) performed a study analysing scientific software from many different application
areas in order to shed light on the answer to this question. Hatton’s study involved two
types of quality tests. The first test, T1, involved static analysis of over 100 pieces of
scientific software. This type of analysis results in a listing of “weaknesses”, or static
code faults — i.e., known “misuse[s] of the language which will very likely cause the
program to fail in some context”. The second test, T2, involved comparing the output of
nine different seismic data processing programs, each one supposedly designed to do
the same thing, on the same input data. Hatton found that the scientific software anal-
ysed had plenty of statically detectable faults, that the number of faults varied widely
across the different programs analysed, and that there is significant and unexpected
uncertainty in the output of this software: agreement amongst the seismic process-
ing packages is only to one significant digit. Hatton concludes that, “taken with other
evidence, the T experiments suggest that the results of scientific calculations carried
out by many software packages should be treated with the same measure of disbelief
researchers have traditionally attached to the results of unconfirmed physical exper-
iments” Thus, if Hatton’s findings are any indication of quality of scientific software

355

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

in general then improvements in software quality assessment of scientific software is
dearly needed.

2.4 Climate model development

The climate is “all of the statistics describing the atmosphere and ocean determined
over an agreed time interval” Weather, on the other hand, is the description of the
atmosphere at a single point in time. Climate modellers are climate scientists who
investigate the workings of the climate by way of computer simulations: “Any climate
model is an attempt to represent the many processes that produce climate. The ob-
jective is to understand these processes and to predict the effects of changes and
interactions. This characterization is accomplished by describing the climate system in
terms of basic physical, chemical and biological principles. Hence, a numerical model
can be considered as being comprised of a series of equations expressing these laws
(McGuffie and Henderson-Sellers, 2005).”

Climate modelling has also become a way of answering questions about the nature
of climate change and about predicting the future climate and, to a lesser extent, the
prediction of societal and economic impacts of climate change.

Climate models come in varying flavours based on the level of complexity with which
they capture various physical processes or physical extents. GCMs (“Global Climate
Models”, or “General Circulation Models”) are the most sophisticated of climate models.
They are numerical simulations that attempt to capture as many climate processes as
possible with as much detailed output as possible. Model output consists of data for
points on a global 3-D grid as well as other diagnostic data for each time-step of the
simulation. Whilst GCMs aspire to be the most physically accurate of models this does
not mean they are always the most used or useful: simpler models are used for specific
problems or to “provide insight that might otherwise be hidden by the complexity of the
larger models” (McGuffie and Henderson-Sellers, 2005; Shackley et al., 1998). In this
paper we focus on the development of GCMs, for two reasons: they are the most

356

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

complex from a software point of view, and, to the extent that they provide the detailed
projections of future climate change used to inform policy making, they are perhaps
the models for which software quality matters the most.

GCMs are typically constructed by coupling together several components, each of
which is responsible for simulating the various subsystems of the climate: atmosphere,
ocean, ice, land, and biological systems. Each component can often be run indepen-
dently to study the subsystem in isolation. A special model component, the coupler,
manages the transfer of physical quantities (energy, momentum, air, etc.) between
components during the simulation. As GCMs originally included only atmosphere and
ocean components, models that include additional earth system processes are often
referred to as Earth System Models (ESMs). For simplicity, hereafter, we will use the
phrase climate model to mean both GCMs and ESMs.

In order to facilitate experimentation, climate models are highly configurable. Entire
climate subsystem components can be included or excluded, starting conditions and
physical parameterizations specified, individual diagnostics turned on or off, as well as
specific features or alternative implementations of those features selected.

We are only aware of one study, Easterbrook and Johns (2009), that specifically
examines the software development practices of climate modellers. The authors per-
formed an ethnographic study of a major climate modelling centre in order to explore
how scientists “think about software correctness, how they prioritize requirements, and
how they develop a shared understanding of their models.” The results confirm what
we have already summarised above about general scientific software development in
a high-performance computing environment.

Easterbrook and Johns find that evolution of the software and structure of the de-
velopment team resemble those found in an open source community even though the
centre’s code is not open nor is development geographically distributed. Specifically,
the domain experts and primary users of the software (the scientists) are also the de-
velopers. As well, there are a small number of code owners who act as gatekeepers
over their component of the model. They are surrounded by a large community of

357

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

developers who contribute code changes that must pass through an established code
review process in order to be included in the model.

Easterbrook and Johns also describe the verification and validation (V&V) practices
used by climate modellers. They note that these practices are “dominated by the un-
derstanding that the models are imperfect representations of very complex physical
phenomena.” Specific practices include the use of validation notes: standardized vi-
sualisations of model outputs for visually assessing the scientific integrity of the run or
as a way to compare it with previous model runs. Another V&V technique is the use of
bit-level comparisons between the output of two different versions of the model config-
ured in the same way. These provide a good indicator of reproducibility on longer runs,
and strong support that the changes to the calculational model have not changed the
theoretical model. Finally, results from several different models are compared. Orga-
nized model intercomparisons are conducted with models from several organisations
run on similar scenarios *. Additionally, the results from several different runs of the
same model with perturbed physical parameters are compared in model ensemble
runs. This is done so as to compare the model’s response to different parameteri-
zations, implementations, or to quantify output probabilities. Easterbrook and Johns
conclude that “overall code quality is hard to assess”. They describe two sources of
problems: configuration issues (e.g. conflicting configuration options), and modelling
approximations which lead to acknowledged error. Neither of these are problems with
the code per se.

3 Approach

In this study we analysed three different climate models, and three unrelated open-
source projects for comparison. We repeated our analysis for multiple versions of each
product, and we calculated defect density using several different methods. There are

‘See http://cmip-pcmdi.linl.gov/ for more information.

358

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://cmip-pcmdi.llnl.gov/

[
o

[N

5

a variety of methods for deciding on what constitutes a defect and how to measure the
size of a software product. This section makes explicit our definition of a defect and
product size, and explains in detail how we conducted our study.

3.1 Participants

Convenience sampling and snowballing were used to find climate modelling centres
willing to participate (Fink, 2008). We began with our contacts from a previous study
(Easterbrook and Johns, 2009), and were referred to other contacts at other centres.
In addition, we were able to access the code and version control repositories for some
centres anonymously from publicly available internet sites.

We only considered modelling centres with large enough modelling efforts to warrant
a submission to the IPCC Fourth Assessment Report (Solomon et al., 2007). We used
this criteria because the modelling centres were well-known, and we had access to the
code, project management systems, and developers. In the interests of privacy, the
modelling centres remain anonymous in this report. We use the identifiers C1, C2, and
C3 to refer to the three climate models we studied.

To provide a comparison to other kinds of software, we also performed a defect
density analysis on three projects unrelated to climate modelling:

— the Apache HTTPD® webserver, which has been widely studied as an example of
high quality open source software;

— the Visualization Toolkit (VTK)6, a widely used open source package for scientific
visualization;

— the Eclipse project, an open source Integrated Development Environment, for
which Zimmermann et al. (2007b) provide a detailed defect density analysis.

®http://httpd.apache.org/
6http://www.vtk.org/

359

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://httpd.apache.org/
http://www.vtk.org/

15

20

3.2 Terminology

For the remainder of this paper, we adopt the following terminology:

— Error is the difference between a measured or computed quantity and the value
of the quantity considered to be correct.

— A code fault is a mistake made when programming; it is “ a misuse of the language
which will very likely cause the program to fail in some context” (Hatton, 1997b).

— A failure occurs when a code fault is executed (Hook, 2009).

— The terms defect and bug are commonly used to refer to failures or faults, or both.
We use these terms to mean both failures and faults, unless specified otherwise.

— Defect reports are reports about faults or failures, typically recorded in a bug
tracking system, along with documentation on the resolution of the problem.

— A defect fix is any change made to the code to repair a defect, whether or not
a defect report was documented.

3.2.1 Identifying defects

One approach to measuring software defects is to count each documented report of
a problem filed against a software product. This approach has the drawback of ignoring
those defects that are not formally reported, but which are found and fixed nonethe-
less. Since we did not have information on the bug reporting practices for every model
we studied, we broadened our characterization of a defect from reported and fixed
problems to any problem fixed. Hence, in addition to examining defect reports, we ex-
amined the changes made to the code over a given period, to identify those that were
intended to repair a defect.

Defect reports are usually easy to identify, since they are labeled and stored in
a project database which can be queried directly. We consider only those reports

360

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

specifically labeled as defects (as opposed to enhancements or work items) as well as
being labeled as fixed (as opposed to unresolved or invalid).

Identifying defects fixes is more problematic. Although all code changes are recorded
in a version control repository, the only form of labeling is the use of free-form revision
log messages associated with each change. We used an informal technique for identi-
fying defect fixes by searching the revision log messages for specific keywords or tex-
tual patterns (Zimmermann et al., 2007a). We began by manually inspecting a sample
of the log messages and code changes from each project. We identified which revi-
sions appeared to be defect fixes based on our understanding of the log message and
details of the code change. We then proposed patterns (as regular expressions) for
automatically identifying those log messages. We refined these patterns by sampling
the matching log messages and modifying the patterns to improve recall and precision.
The pattern we settled on matches messages that contain the strings “bug”, “fix”, “cor-
rection”, or “ticket”; or contain the “#” symbol followed by digits (this typically indicates
a reference to a report ticket). Figure 1 shows a sample of log messages that match
this pattern.

Some centres were able to provide us with a snapshot of their version control reposi-
tory, as well as access to their bug tracking system (e.g., Bugzilla or Trac). In the cases
where we only had access to the version control repository we used the tool CVS-
ANALY to build an SQLITE® database of the repository items. This database includes
tables for: the log messages, tags, and all of the files and folders. One centre provided
us with a snapshot of their trac® installation and repository. We used the database
powering the trac installation (also based on SQLITE) as it stores the repository data
in a similar way to CVSANALY.

" http://tools.libresoft.es/cvsanaly
8http://sqlite.org/
9http://trac.edgewall.org/

361

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://tools.libresoft.es/cvsanaly
http://sqlite.org/
http://trac.edgewall.org/

10

15

20

25

3.2.2 Measuring product size

In order to normalize defect counts, it is hecessary to select a method for calculating
product size. The size of a software product is typically measured in terms of code
volume (e.g., source lines of code) or function points (a measure of the functionality
provided by the source code). Source lines of code (SLOC) can be measured auto-
matically. In contrast, function points, which are considered to be a more accurate
measurement of the essential properties of a piece of software (Jones, 2008), rely
on subjective judgment, and are time-consuming to assess for large software systems.
Therefore, we chose to use the source lines of code metric for its ease of measurement
and repeatability (Jones, 2008; Park, 1992).

There are two major types of source lines of code measures: physical, and logical.
The Physical SLOC measure views each line of text in a source file as a potential
line of code to be counted. The physical SLOC measure we report counts all lines
except blank lines and lines with only comments. The Logical SLOC measure ignores
the textual formatting of the source code and considers each statement to be a line of
code. In this study we report both of these measures but we use the physical SLOC
measure in our calculation of defect density since we feel it as a more reproducible and
language-neutral measure.

We used the CoDECOUNT® tool to count source lines of code for all of our projects.
We determined which source files to include in the count based on their extension: .F ,
., .f90 for Fortran files and .c , .cpp , .h, and .hpp for C/C++ projects). We in-
cluded other files if we knew from conversations with the developers that they contained
code (for example, model C2 contained Fortran code in certain .h files). Additionally,
we analysed the source files without performing any C preprocessing and so our line
counts include C preprocessing directives and sections of code that might not appear
in any specific model configuration.

1Oh'(tp://csse.usc.edu/researoh/CODECOUNT/

362

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://csse.usc.edu/research/CODECOUNT/

10

15

20

3.2.3 Calculating defect density

Defect density is loosely defined as the number of defects found in a product divided
by the size of the product. Defects are discovered continuously throughout the de-
velopment and use of a software product. However, product size changes discretely
as modifications are made to the source code. Thus, in order to calculate the defect
density of a product we must be able to associate defects to a particular version of
the product. We use the term version to refer to any snapshot of model source code
whose size we can measure and assign defects to. A version in this sense does not
necessarily refer to a public release of the product since defects can be both reported
and fixed on unreleased or internally released versions.

In general, we attempted to limit the versions we analysed to major product releases
only. We began with a pool of candidate versions populated from the source code re-
visions in the version control repository. Where possible, we used only those versions
indicated as significant by the developers through personal communication. Other-
wise, we narrowed the pool of candidate versions to only those revisions that were
tagged in the repository (models C1, C3, and comparators HTTPD and VTK) under the
assumption that tags indicated significance. We further narrowed our candidate ver-
sions by selecting only those tagged revisions that had associated defect reports. We
assumed that reports are typically logged against major versions of the product. We at-
tempted to match repository tag names to the version numbers listed in the issue report
database for the project. Where there was ambiguity over which tag version to choose
we chose the oldest one''. We will refer to the remaining candidate versions — those
that were included in our analysis — as selected versions. Figure 2 shows a time line for
each project marking the selected versions, as well as the other candidate versions we

For instance, in one project there were repository tags of the form
(release_number)_beta_(id), and a report version name of the form (release_number)_beta.
Our assumption is that development on a major version progresses with minor versions being
tagged in the repository up until the final release.

363

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

considered. To maintain the anonymity of the models, we have used artificial version
names rather than the repository tags or actual model version numbers.

Assigning a defect to a product version can be done in several ways. In a simple
project, development proceeds sequentially, one release at a time. Simplifying, we can
make the assumption that the defects found and fixed leading up to or following the
release date of a version are likely defects in that version. Defects which occur before
the release date are called pre-release defects and those which occur afterwards are
called post-release defects. One method for assigning defects to a product version is to
assign all of the pre- and post-release defects that occur within a certain time interval
of a version’s release date to that version. We call this method interval assignment.
We used an interval duration of six months to match that used by Zimmermann et al.
(2007a).

An alternative method is to assign to a version all of the defects that occur in the time
span between its release date and the release date of the following version. We call
this method span assignment.

A third, and more sophisticated method is used in (Zimmermann et al., 2007a),
whereby defect identifiers are extracted from the log messages of fixes, and the version
label from the ticket is used to indicate which version to assign the defect to. We call
this method report assignment.

We used all three assignment methods to calculate defect density.

4 Results

Figure 3 displays the physical, logical and total line count for each project. Table 2
lists the median defect densities of each project version using the physical product size
measurement. For Eclipse, we extracted defect counts for each version by totaling the
defects found across all of the plug-ins that compose the Eclipse JDT product using
the data published by Zimmermann et al. (2007b).

364

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

To put our results into perspective, Pfleeger and Hatton (1997) quote published post-
delivery defect rates which we reproduce in Table 1. Hatton (1997a) states: “three to six
defects per KLOC represent high-quality software.” Li et al. (1998) state that “leading
edge software development organizations typically achieve a defect density of about
2.0 defects/KLOC”. The COQUALMO quality model (Chulani and Boehm, 1999), which
bases its interpretation of defect density on the advice of industry experts, suggests
that high software quality is achieved at a post-release defect density of 7.5 or lower.

Figure 4 displays the post-release defect densities of the projects we analysed, with
several of the published figures noted above marked on the chart for comparison. Both
the fix- and report-defect densities are included for each assignment method.

Regardless of counting fixes or reported defects and regardless of the assignment
method used, the median defect density of each of the climate models is lower, often
significantly, than the projects listed in Table 1. Similarly, the median model defect
density is lower, often significantly, than the comparator projects.

Version defect densities are generally larger under span-assignment, and small un-
der report-assignment. This is most likely because fewer defects are reported than
those that are actually fixed. For instance, only suitably important defects may be re-
ported whereas minor defects are simply found and fixed.

5 Discussion

Each of the comparator projects we chose is a long-lived, well-known, open-source
software package. We have good reason to believe that they are each of high quality
and rigorously field-tested. Thus, our results suggest that the software quality of the cli-
mate models investigated is as good, or better than, the comparator projects and defect
density statistics we found in the literature. In addition, to the best of our knowledge,
the climate modelling centres which produced the models we studied are representa-
tive of major modelling centres. This suggests that climate models from other centres
may also have similarly low defect densities.

365

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

These conclusions are surprising in light of previous studies of scientific software
development that show how volatile and vague their requirements are (Kelly, 2007;
Segal and Morris, 2008; Segal, 2008; Carver et al., 2007). Our results suggests that the
climate modellers have produced very high quality software under uncertain conditions
with little in the way of guidance from the software engineering community.

Notwithstanding issues of construct validity (Sect. 5.1.4), we offer the following hy-
potheses to explain the high quality of the models:

1. Domain expertise. Climate modelers are at once the scientific experts, primary
users, and primary developers of climate models. This hypothesis asserts that
because of their deep familiarity with the project, climate modellers make fewer
requirements errors and introduce fewer logical defects. We would also expect
that modellers are better able to recognise, find, and fix defects when they do
arise, but that the increase in defect density this leads to is overwhelmed by former
effect.

2. Rigorous development process. As we have discussed, scientific correctness is
paramount for climate modellers. This concern is reflected in an extremely rigor-
ous change management process where each code change undergoes intense
scrutiny by other modellers (Easterbrook and Johns, 2009). Under this hypothe-
sis, the relative effort put into inspecting code changes leads to fewer introduced
defects. This hypothesis would also suggest we would also expect to see a lower
code churn per developer per unit time than in commercial software practices.

3. Narrow usage profile. Our comparators are general purpose tools (i.e. a numeri-
cal library, an IDE, and a webserver) whereas, this hypothesis holds, even though
climate models are built to be extremely flexible they are most often used and
developed for a much smaller set of scenarios than they are capable of perform-
ing in. That is, only a limited number of the possible model configurations are
regularly used in experiments. Development effort is concentrated on the code
paths supporting these configurations resulting in well-designed, well-tested and

366

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

consequently, high quality code. However, this hypothesis would suggest the
models may be relatively brittle, in that the less frequently used configurations of
the models may include many more unnoticed code faults (unacknowledged er-
rors). If code routines that are rarely used make up a significant proportion of the
code size, then the defect density count will be skewed downwards.

. Intrinsic sensitivity/tolerance. This hypothesis posits that there are intrinsic prop-

erties of climate models that lend to the production of high quality software inde-
pendent of the skill of the development team. For instance, climate models may
be sensitive to certain types of defects (those that change climate dynamics or
numerical stability, for example). These defects appear as obvious failures (e.g.
a crash, or numerical blowup) or improbable climate behaviours, and are there-
fore fixed at the time of development resulting in fewer defect reports and fixes.
At the same time, we have evidence that climate model behaviour is robust. One
climate modeller we interviewed explained that the climate is a “heterogeneous
system with many ways of moving energy around from system to system” which
makes the theoretical system being modelled “tolerant to the inclusion of bugs.”
The combination of both factors means that code defects are either made obvi-
ous (and so immediately fixed) or made irrelevant by the nature of climate models
themselves and therefore never reported as defects.

. Successful disregard. Compared to other domains, climate modellers may be

less likely to consider certain defects important enough to report or even be seen
as defects. The culture of emphasizing scientific correctness may lead modellers
to downplay or disregard defects which do not cause errors in correctness (e.g.
defects in usability or “good” coding practices). In other words, modellers have
“learned to live with a lower standard” of code and development processes simply
because they are good enough to produce legitimate scientific results. In part,
this hypothesis calls into question the validity of using defect density to compare
software quality across domains, which we will consider in depth in the following
section.
367

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

5.1 Threats to validity
5.1.1 Opverall study design

We do not yet understand enough about the kinds of climate modelling organisations
to make any principled sampling of climate models that would have any power to gen-
eralize to all climate models. Nevertheless, since we used convenience and snowball
sampling to find modelling centres to participate in our study we are particularly open
to several biases (Fink, 2008):

— Modelling centres willing to participate in a study on software quality may be more
concerned with software quality themselves;

— Modelling centres which openly publish their climate model code and project arti-
facts may be also be more concerned with software quality;

We have also chosen to include a model component (C1) in our study. Even though
this particular model component is developed as an independent project it is not clear
to what extent it is comparable to a full GCM.

Our selection of comparator projects was equally undisciplined: we chose projects
that were open-source, and that were large enough and well-known enough to provide
an intuitive comparison to the climate models.

Our choice to use defect density as a quality indicator was made largely because of
its place as a de facto rough measure of quality, and because of existing publications
to compare to. Gauging software quality is known to be tricky and subjective and most
sources suggest that it can only accurately be done by considering a wide range of
quality indicators (Jones, 2008; IEEE, 1998; ISO, 2001; Hatton, 1995). Thus, at best,
our study can only hope to present a very limited view of software quality.

5.1.2 Internal validity

The internal validity of the defect assignment methods (i.e., interval- and span-
assignment) is threatened by the fact that we chose to view software development
368

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

as proceeding in a linear fashion, from one major version to the next. This view as-
sumes a defect found immediately before and after a release date is a defect in that
release. However, when several parallel branches of a project are developed simulta-
neously, as some projects in our study were, this flattened view of development is not
able to distinguish amongst the branches. We may have incorrectly assigned a defect
to a version in a different branch if the defect’s date was closer to the version’s release
date than to the version the defect rightfully is associated with.

In addition, we assumed a 1:1 mapping between defect indicators and defects. We
did not account for reports or version control check-ins that each refer to multiple de-
fects, nor for multiple reports or check-ins that, together, indicate only one defect.

Finally, we did not perform any rigorous analysis of recall and precision of our fix
identification method. This means we cannot say whether our counts are over- or
under-estimates of the true number of check-ins that contain defect fixes.

5.1.3 External validity

The external validity of our assignment methods depends on correctly picking reposi-
tory versions that correspond to actual releases. If a version is used that is not a release
then it is not clear what is meant by pre-release and post-release defects, and whether
they can be compared. For several of the projects we made educated guesses as to
the versions to select (as described in Sect. 3), and so we may have classified some
defects as post-release defect that may more rightly be classified as pre-release de-
fects had we chosen the correct version. Similarly, if there were no releases of the
project made in our repository snapshot, we used intermediate versions. This makes
it difficult to justify comparing defect rates since pre- and post-release are not clearly
defined.

Our definition of a defect as “anything worth fixing” was a convenient definition for
our purposes but it has not been validated in the field, and it is even unclear that it
corresponds to our own intuitions. What about defects that are found but not worth
fixing right then and there? We confront this question in Sect. 5.2.

369

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Finally, there are many small differences between the way we carried out our iden-
tification of code fixes and that of Zimmermann et al. (2007a). In their study, they did
not rigorously specify the means by which check-in comments were identified as fixes;
they only gave a few examples of common phrases they looked for. We were forced to
invent our own approximation. Furthermore, for report-assignment, Zimmerman et al.
used the first product version listed in a report’s history as the release date to associate
defects with. Since we did not have access to the report history for every project we
analysed, we only considered the product version as of the date we extracted the re-
port information. As well, Zimmerman et al. only counted defects that occurred within
6 months of the release date whereas we counted all defects associated with a report
version. Thus, it is not clear to what extent we can rightly compare our results.

5.1.4 Construct validity

As we have mentioned, defect density is the de facto informal measure of software
quality but it is by no means considered a complete or entirely accurate measure. Hat-
ton (1997a) says: “We can measure the quality of a software system by its defect
density the number of defects found per KLOC over a period of time representing rea-
sonable system use. Although this method has numerous deficiencies, it provides
a reasonable though rough guide.”

The question we explore in this section is: to what extent can we consider defect
density even a rough indicator of quality?

We suggest the following aspects which make the defect density measure open to
inconsistent interpretation:

— Finding, fixing, and reporting behaviour. In order to be counted, defects must be
discovered and reported. This means that the defect density measure depends
on the testing effort of the development team, as well as the number of users, and
the culture of reporting defects. An untested, unused, or abandoned project may
have a low defect density but an equally low level of quality.

370

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

20

25

Accuracy and completeness of repository comments or defect reports are ac-
curate. There is good reason to believe that these data sources contain many
omissions and inaccuracies (Aranda and Venolia, 2009).

— Product use. The period of time over which to collect defects (e.g. “reasonable
system use”) is unclear and possibly varies from release to release.

— Release cycle. How do we decide which defects to consider post-release and
which ones pre-release? Do we consider beta releases or only major releases?
Does a project even make major releases or does it have continuous incremental
releases?

— Product size. There are many ways of evaluating the product size, which one
should we use and is it replicable? Can it account for the expressiveness of
different languages, formatting styles, etc.?

— Criticality and severity. Are all defects counted equally, or certain severity levels
ignored?

When we use the defect density measure to compare software quality between
projects, we are implicitly making the assumption that these factors are similar in each
project. If they are not — and without any other information we have no way of knowing
— then we suggest the defect density measure is effectively meaningless as a method
of comparing the software quality, even roughly, between products. There is too much
variability in the project conditions for a single interval measure to account for or ex-
press.

Even if all our concerns above are taken into account, we cannot rightly conclude
that a product with low defect density is, even roughly, of better quality than one with
a higher defect density. Jones (2008) states that whilst software defect levels and user
satisfaction are correlated, this relationships disappears when defect levels are low:
having fewer defects does not tell us anything about the presence of favourable quality

371

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

attributes. In Sect. 5.2 we will discuss ideas for future studies to help discover quality
factors relevant in the climate modelling domain.

5.2 Future work

Many of the limitations to the present study could be overcome with more detailed
and controlled replications. Mostly significantly, a larger sample size both of climate
models and comparator projects would lend to the credibility of our defect density and
fault analysis results.

As we have mentioned elsewhere, assessing software quality is not a simple matter
of measuring one or two quality indicators, but neither is it clear how any collection of
measurements we could make could give us an assessment of software quality with
confidence. Hatton (1995) remarks: “There is no shortage of things to measure, but
there is a dire shortage of case histories which provide useful correlations. What is
reasonably well established, however, is that there is no single metric which is contin-
uously and monotonically related to various useful measures of software quality ...”

Later on, he states that “individual metric measurements are of little use and instead]
combinations of metrics and some way of comparing their values against each other or
against other populations is vital”. His proposal is to perform a Demographic Analysis
— a comparison over a large population of codes — of software metrics in order to learn
about the discriminating power of the measure in a real-world context.

While an important future step, mining our arsenal of metrics for strong correlations
with our implicit notions of software quality, which we believe this approach boils down
to, cannot define the entire research program. There is a deeper problem which must
be addressed first: our notion of software quality with respect to climate models is
theoretically and conceptually vague. It is not clear to us what differentiates high from
low quality software; nor is it clear which aspects of the models or modelling processes
we might reliably look to make to that assessment. If we do not get clear on what we
mean by software quality first then we have no way to assess what any empirical test is

372

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

measuring, and so we will have no way to accept or reject measures as truly indicative
of quality. We will not be doing science.

To tackle this conceptual vagueness, we suggest a research program of theory build-
ing. We need a theory of scientific software quality that describes the aspects of the
climate models and modelling process which are relevant to the software quality un-
der all of the quality views outlined by Kitchenham and Pfleeger (except perhaps the
transcendental view, which by definition excludes explanation), as well as the ways in
which those aspects are interrelated. To achieve this, we propose in-depth empirical
studies of the climate modelling community from which to ground a theory.

We suggest further qualitative studies to investigate the quality perceptions and con-
cerns of the climate modellers, as well as documenting the practices and processes
that impact model software quality. A more in depth study of defect histories will give
us insights into the kinds of defects climate modellers have difficulty with, and with how
the defects are hidden and found. As well, we suggest detailed case studies of the cli-
mate modelling development done in a similar manner to Carver et al. (2007), or Basili
et al. (2008).

We also see a role for more participatory action research whereby software re-
searchers work directly with climate modellers to implement a quality assessment pro-
gram. Our interviews have shown us than software quality is a recognised concern
for climate modellers but it is not one that is widely discussed outside of each climate
modelling centre. Software researchers may be able to play a role in fostering the de-
velopment of community-wide software quality benchmarks or assessment programs
by providing climate modellers with a level-headed interpretation existing assessment
methodologies, as well as helping with their implementation and studying their effec-
tiveness.

373

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

6 Conclusions

The results of our defect density analysis of three leading climate models show that
they each have a very low defect density, across several releases. A low defect density
suggests that the models are of high software quality, but we have only looked at one
of many possible quality metrics. Knowing which metrics are relevant to climate mod-
elling software quality, and understanding precisely how they correspond the climate
modellers notions of software quality (as well as our own) is the next challenge to take
on in order to achieve a more thorough assessment of climate model software quality.

Acknowledgements. We would like to thank the modeling centres who participated in this study
and provided access to their code repositories. Funding was provided by NSERC.

References

Aranda, J. and Venolia, G.: The secret life of bugs: Going past the errors and omis-
sions in software repositories, in: ICSE ’'09: Proceedings of the 31st International
Conference on Software Engineering, IEEE Computer Society, Washington, DC, USA,
doi:10.1109/ICSE.2009.5070530, 298—-308, 2009. 371

Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L. M., Hollingsworth, J. K., Shull, F., and
Zelkowitz, M. V.: Understanding the high-performance-computing community: a software
engineer’s perspective, IEEE Software, 25, 29-36, doi:10.1109/MS.2008.103, 2008. 351,
373

Carver, J. C., Kendall, R. P, Squires, S. E., and Post, D. E.: Software Development Environ-
ments for Scientific and Engineering Software: A Series of Case Studies, in: ICSE ’07:
Proceedings of the 29th International Conference on Software Engineering, IEEE Computer
Society, Washington, DC, USA, doi:10.1109/ICSE.2007.77, 550-559, 2007. 366, 373

Chulani, S. and Boehm, B.: Modeling Software Defect Introduction and Removal: COQUALMO
(COnstructive QUALIty MOdel), Tech. rep., Center for Software Engineering, USC-CSE-99-
510, 1999. 365

Easterbrook, S. M. and Johns, T. C.: Engineering the Software for Understanding Climate

374

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSE.2009.5070530
http://dx.doi.org/10.1109/MS.2008.103
http://dx.doi.org/10.1109/ICSE.2007.77

10

15

20

25

30

Change, Comput. Sci. Eng., 11, 65-74, doi:10.1109/MCSE.2009.193, 2009. 348, 357, 359,
366

Fink, A.: How to Conduct Surveys: A Step-by-Step Guide, 4th edn., Sage Publications, Inc,
2008. 359, 368

Hatton, L.: Safer C: Developing Software for in High-Integrity and Safety-Critical Systems,
McGraw-Hill, Inc., New York, NY, USA, 1995. 368, 372

Hatton, L.: N-version design versus one good version, |IEEE Software, 14, 71-76,
doi:10.1109/52.636672, 1997a. 365, 370

Hatton, L.: The T experiments: errors in scientific software, IEEE Comput. Sci. Eng., 4, 27-38,
doi:10.1109/99.609829, 1997b. 355, 360

Hook, D.: Using Code Mutation to Study Code Faults in Scientific Software, Master’s thesis,
Queen’s University, 2009. 353, 360

Hook, D. and Kelly, D.: Testing for trustworthiness in scientific software, in: SECSE
'09: Proceedings of the 2009 ICSE Workshop on Software Engineering for Com-
putational Science and Engineering, IEEE Computer Society, Washington, DC, USA,
doi:10.1109/SECSE.2009.5069163, 59—64, 2009. 353

IEEE: |EEE Standard Glossary of Software Engineering Terminology, Tech. rep.,
doi:10.1109/IEEESTD.1990.101064, 1990. 350

IEEE: IEEE Standard for a Software Quality Metrics Methodology, Tech. rep.,
doi:10.1109/IEEESTD.1998.243394, 1998. 350, 368

ISO: ISO/IEC, 9126-1:2001(E) Software Engineering — Product Quality, Tech. rep., available at:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue _detail.hntm?csnumber=22749
(last access: 10 February 2012), 2001. 350, 368

Jones, C.: Applied Software Measurement: Global Analysis of Productivity and Quality, 3rd
Edn., McGraw-Hill Osborne Media, 2008. 362, 368, 371

Kelly, D. and Sanders, R.: Assessing the quality of scientific software, in: First International
Workshop on Software Engineering for Computational Science & Engineering, available at:
http://cs.ua.edu/"SECSEOQ8/Papers/Kelly.pdf (last access: 10 February 2012), 2008. 354

Kelly, D. F.: A software chasm: software engineering and scientific computing, IEEE Software,
24, 120-119, doi:10.1109/MS.2007.155, 2007. 350, 366

Kitchenham, B. and Pfleeger, S. L.: Software quality: the elusive target [special issues section],
IEEE Software, 13, 12-21, doi:10.1109/52.476281, 1996. 349

Li, M. N., Malaiya, Y. K., and Denton, J.: Estimating the number of defects: a simple and intuitive

375

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/MCSE.2009.193
http://dx.doi.org/10.1109/52.636672
http://dx.doi.org/10.1109/99.609829
http://dx.doi.org/10.1109/SECSE.2009.5069163
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1109/IEEESTD.1998.243394
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://cs.ua.edu/~SECSE08/Papers/Kelly.pdf
http://dx.doi.org/10.1109/MS.2007.155
http://dx.doi.org/10.1109/52.476281

10

15

20

25

approach, in: Proc. 7th Int'l Symposium on Software Reliability Engineering (ISSRE), avail-
able at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5000, 307-315, 1998.
365

McGuffie, K. and Henderson-Sellers, A.: A Climate Modelling Primer (Research & Develop-
ments in Climate & Climatology), 2nd Edn., John Wiley & Sons, 2005. 356

Park, R. E.: Software Size Measurement: A Framework for Counting Source Statements, Tech.
rep., Software Engineering Institute, 1992. 362

Pfleeger, S. L. and Hatton, L.: Investigating the influence of formal methods, Computer, 30,
33-43, doi:10.1109/2.566148, 1997. 365, 377

Segal, J.: Models of scientific software development, in: Proc. 2008 Workshop Software Eng.
in Computational Science and Eng. (SECSE 08), available at: http://oro.open.ac.uk/17673/,
2008. 351, 355, 366

Segal, J. and Morris, C.: Developing scientific software, IEEE Software, 25, 18-20,
doi:10.1109/MS.2008.85, 2008. 350, 366

Shackley, S., Young, P., Parkinson, S., and Wynne, B.: Uncertainty, complexity and concepts of
good science in climate change modelling: are GCMs the best tools?, Climatic Change, 38,
159-205, doi:10.1023/A:1005310109968,1998. 356

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and
Miller, H. L. (Eds.): Climate Change 2007 — The Physical Science Basis: Working Group |
Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press,
Cambridge, UK and New York, NY, USA, 2007. 359

Stevenson, D. E.: A critical look at quality in large-scale simulations, Comput. Sci. Eng., 1,
53-63, doi:10.1109/5992.764216, 1999. 351

van Vliet, H.: Software Engineering: Principles and Practice, 2nd edn., Wiley, 2000. 349

Zimmermann, T., Premraj, R., and Zeller, A.: Predicting Defects for Eclipse, in: PROMISE
’07: Proceedings of the Third International Workshop on Predictor Models in Software En-
gineering, IEEE Computer Society, Washington, DC, USA, doi:10.1109/PROMISE.2007.10,
9+ pp., 2007a. 361, 364, 370

Zimmermann, T., Premraj, R., and Zeller, A.: Predicting defects for eclipse, in: Proceedings of
the Third International Workshop on Predictor Models in Software Engineering, 2007b. 359,
364

376

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5000
http://dx.doi.org/10.1109/2.566148
http://oro.open.ac.uk/17673/
http://dx.doi.org/10.1109/MS.2008.85
http://dx.doi.org/10.1023/A:1005310109968
http://dx.doi.org/10.1109/5992.764216
http://dx.doi.org/10.1109/PROMISE.2007.10

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook
Table 1. Post-delivery problem rates as reported by Pfleeger and Hatton (1997).

Source Language Failures per KLOC Title Page
IBM normal development Various 30 Abstract Introduction
Satellite planning study Fortran 61to 16
Siemens operating system Assembly 6to15 Conclusions References
Unisys communications software Ada 2t09
IBM Cleanroom development Various 3.4 Tables Figures
NAG scientific libraries Fortran 3.0
Lloyd’s language parser C 1.4 P >l
CDIS air-traffic-control support C 0.8
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

377

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 2. Median project defect density (interquartile range in parenthesis) of analysed versions

under different defect assignment methods.

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Interval-assignment

Span-assignment

Report-assignment

Project Fixes Tickets Fixes Tickets Fixes Tickets

C1 0.540 (0.277) 0.475 (0.341) 0.752 (0.476) 0.284 (0.803) 0.124 (0.325) 0.241 (0.296)
c2 1.169 (0.549) 0.073 (0.029) 0.773 (0.357) 0.060 (0.019) 0.202 (0.106) 0.058 (0.025)
C3 0.838 (0.206) 0.191 (0.006) 0.522 (2.191) 0.124 (0.415) 0.006 (0.023) 0.039 (0.034)
Apache 3.586 (2.793) 0.755 (1.489) 12.503 (15.901) 3.436 (6.851) 0.283 (0.824) 0.270 (2.780)
VTK 1.217 (0.304) 0.010 (0.024) 0.776 (0.957) 0.009 (0.023) 0.000 (0.000) 0.000 (0.000)

378

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10.

. CT : BUGFIX083

. CT : BUGFIX122

add the initialisation
of the prd 2D array in the xxxxx
subroutine

xxxx_bugfix_041 : SM Remove unused

variables tauxg and tauyg

Correct a bug in ice rheology, see ticket
#78

Correct a bug and clean comments in
XXXXX, see ticket #79

Ouput xxxx additional diagnostics at the
right frequency, see ticket:404

Initialization of passive tracer trends
module at the right place, see ticket:314

. additional bug fix associated with

changeset:1485, see ticket:468

improve restart case
when changing the time steps between 2
simulations

Fix a stupid bug for time splitting and
ensure restartability for dynspg_ts in
addition, see tickets #280 and #292

dev_004_VVL:sync: synchro with trunk
(r1415), see ticket #423

Fig. 1. A sample of version control log messages indicating a defect fix. Redacted to preserve

379

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

m © S0 O
N yoe
ClF I 1 \
LSY L2y L O P
c2f B B e
s
Q "
) I NG N
& c3t M T T T T T T T
© e A > "
> S ~ o5 »
Avache i y e N v
p m T T T T TTTTTT T T T 1T T T T
S o YOS voNva
S8 S g WYY
85 g g qes
VIK - \ f —
1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Time (year)

Fig. 2. Project repository time lines. Candidate versions are marked on the timelines with
downward ticks, and analysed versions are labelled.

380

Jaded uoissnosiq | Jaded uoissnosiq

I b i

Jaded uoissnosiq | Jaded uoissnosiq

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

(8)
@

o
2

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

© %0
70"

<

Hin

neeee,

X

AR

C1

C2

C3

Apache

VTK

o
POV T WOV
-

A

5,
LR

o

K
o

<o

Eclipse

oS0

»

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

0 500 1000

1500

Lines of code (KLOC)

Il logical [EXJ physical

Fig. 3. Lines of code measurements for each project.

381

[total

2000

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

Interval-assignment Span-assignment Report-assignment
8 _ _
|
L — COQUALMO
7L L L
6 - F — Siemens
5 ! - o
.
oy
2 T
[
0 4t L [L
9] - 1
< 1! |
8 | | 7‘ — IBM cleanroom
3+ | - n | - — NAG
| | — 7
I I |
R I I I
L L L L
T ! I
T s ,
1 Q _ | — Lloyd's
L0 e 07 e O
1A | — cpis
I;I | E T /g EI
S 2 ENi g (n=E
0 I = I L o I s | L J'L—. — L_L_
C1 c2 Cc3 Apache VTK c1 Cc2 c3 Apache VTK c2 Cc3 Apache Ecllpse

Project

[Fixes [Tickets

Fig. 4. Defect density of projects by defect assignment method. Previously published defect
densities from Table 1 are shown on the right.

382

GMDD
5, 347-382, 2012

Software quality of
climate models

J. Pipitone and
S. Easterbrook

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/347/2012/gmdd-5-347-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

